• 2022-07
  • 2022-06
  • 2022-05
  • 2022-04
  • 2021-03
  • 2020-08
  • 2020-07
  • 2020-03
  • 2019-11
  • 2019-10
  • 2019-09
  • 2019-08
  • 2019-07
  • br Results br Individual Patient Derived Gastric Cancer Organoids


    Individual Patient-Derived Gastric Cancer Organoids Display Unique Responses to Chemotherapeutic Drugs and Targeted Therapy
    We generated an initial bank of gastric cancer organoids from tumors obtained from 7 patients (Table 1). For each patient from whom the organoids were derived, patient  Cellular and Molecular Gastroenterology and Hepatology Vol. 7, No. 1
    treatment, cancer staging, and tumor response and recur-rence were recorded when available (Table 1). The morphology of each patient-derived organoid line (huTGO) was unique (Figure 1A and B). Specifically, we observed that whereas huTGO1 and 2 appeared as spherical nests with a central lumen lined by multiple layers of cells, huTGO4 exhibited a cribriform glandular morphology with Luteolin forming multiple lumens of varying sizes (Figure 1A and B). HuTGO5 formed large spheres that consisted of a single epithelial layer by H&E staining (Figure 1A and B). All huTGO lines were passaged and re-formed organoids efficiently except for the huTGO3 line that lasted for only 4 passages before the line no longer persisted. Thus, we were unable to study the huTGO3 in the drug response assays. The proliferative response of each huTGO was measured by 5-ethynyl-2-deoxyuridine (EdU) uptake. This analysis revealed a divergent and significantly different proliferative rate among the different organoid lines (Figure 1C and D). In contrast to the huTGOs, normal human-derived normal fundic gastric organoid (huFGO) lines displayed similar morphologies both in culture (Figure 2A) and by H&E staining (Figure 2B). In addition, the proliferative rates of the huFGOs were not statistically different among the different organoid lines (Figure 2C and D).
    To investigate whether huTGOs are a potential Luteolin in vitro platform to study the efficacy of standard-of-care chemo-therapeutic agents, organoids were treated with drugs that gastric cancer patients are typically treated with (epirubicin, oxaliplatin, 5-fluorouracil [5-FU]) (Figure 3A–C). As a com-parison, organoids generated from normal gastric tissue (huFGOs) were treated with the same drugs (Figure 3D–F). In the huFGO lines it was observed that the half maximal inhibitory concentration (IC50) values, as documented by an MTS cell viability assay, were similar among the organoid lines for each drug that was tested (Figure 3D–F). Statistical analysis revealed an overlapping 95% confidence interval between each huFGO line (Figure 4D–F), thus demon-strating that the IC50 concentrations were not statistically different among these organoids. However, cell viability assays documented divergent responses and varying IC50 values to drug treatments among the huTGO lines (Figure 3A–C, Figure 4A–C). Note that a shift of the curve to the right indicates a higher IC50 (ie, more resistant to that particular drug). Cell viability assays were normalized to vehicle-treated controls to ensure that toxicity was specific to the drug effects.
    Abbreviations used in this paper: CK, cytokeratin; DPBS, Dulbecco phosphate-buffered saline; EdU, 5-ethynyl-20-deoxyuridine; 5-FU, 5-fluorouracil; HER2, human epidermal growth factor receptor 2; huFGO, human-derived normal fundic gastric organoid; huTGO, human-derived tumor gastric organoid; IC50, half maximal inhibitory concentration; PD-L1, programmed death-ligand 1.
    Most current article
    © 2019 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY-NC-ND license ( 2352-345X
    Human-Derived Gastric Cancer Organoids 163
    Table 1.Histologic Classification, Tumor Response, Number of Cases, and Organoid Lines Derived From Patients With
    Gastric Cancer
    Histologic classification No. of cases
    Organoid line Patient treatment and tumor response